Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Шрёдингера уравнение

основное динамическое уравнение нерелятивистской квантовой механики ; названо в честь австрийского физика Э. Шрёдингера , который предложил его в 1926. В квантовой механике Ш. у. играет такую же фундаментальную роль, как уравнение движения Ньютона в классической механике и Максвелла уравнения в классической теории электромагнетизма. Ш. у. описывает измерение во времени состояния квантовых объектов, характеризуемого волновой функцией . Если известна волновая функция y в начальный момент времени, то, решая Ш. у., можно найти y в любой последующий момент времени t. Для частицы массы т, движущейся под действием силы, порождаемой потенциалом V (х, у, z, t), Ш. у. имеет вид: , (

  1. где i = , ═= 1,05.10¾27эрг. сек ≈ Планка постоянная ,═≈ Лапласа оператор (х, у, z ≈ координаты). Это уравнение называется временным Ш. у.

    Если потенциал V не зависит от времени, то решения Ш. у. можно представить в виде:

    y(х, у, z, t) = y (х, у, z), (

  2. где Е ≈ полная энергия квантовой системы, а y (x, у, z) удовлетворяет стационарному Ш. у.:

    ═(

  3. Для квантовых систем, движение которых происходит в ограниченной области пространства, решения Ш. у. существуют только для некоторых дискретных значений энергии: E1, E2,..., En,...; члены этого ряда (в общем случае бесконечного) нумеруются набором целых квантовых чисел n. Каждому значению Еп соответствует волновая функция yn (x, у, z), и знание полного набора этих функций позволяет вычислить все измеримые характеристики квантовой системы.

    В важном частном случае кулоновского потенциала

    (где е ≈ элементарный электрический заряд) Ш. у. описывает атом водорода, и Enпредставляют собой энергии стационарных состояний атома.

    Ш. у. является математическим выражением фундаментального свойства микрочастиц ≈ корпускулярно-волнового дуализма , согласно которому все существующие в природе частицы материи наделены также волновыми свойствами (эта гипотеза впервые была высказана Л. де Бройлем в 192

  4. . Ш. у. удовлетворяет соответствия принципу и в предельном случае, когда длины волн де Бройля значительно меньше размеров, характерных для рассматриваемого движения, содержит описание движения частиц по законам классической механики. Переход от Ш. у. к классическим траекториям подобен переходу от волновой оптики к геометрической. Аналогия между классической механикой и геометрической оптикой, которая является предельным случаем волновой, сыграла важную роль в установлении Ш. у.

    С математической точки зрения Ш. у. есть волновое уравнение и по своей структуре подобно уравнению, описывающему колебания нагруженной струны. Однако, в отличие от решений уравнения колебаний струны, которые дают геометрическую форму струны в данный момент времени, решения y(х, у, z, t) Ш. у. прямого физического смысла не имеют. Смысл имеет квадрат волновой функции, а именно величина rn (x, у, z, t) = |yn (x, у, z, t)|2, равная вероятности нахождения частицы (системы) в момент t в квантовом состоянии n в точке пространства с координатами х, у, z. Эта вероятностная интерпретация волновой функции ≈ один из основных постулатов квантовой механики.

    Математическая формулировка постулатов квантовой механики, основанная на Ш. у., носит название волновой механики. Она полностью эквивалентна т. н. матричной механике В. Гейзенберга , которая была сформулирована им в 1925.

    Ш. у. позволяет объяснить и предсказать большое число явлений атомной физики, а также вычислить основные характеристики атомных систем, наблюдаемые на опыте, например уровни энергии атомов, изменение спектров атомов под влиянием электрического и магнитного полей и т.д. С помощью Ш. у. удалось также понять и количественно описать широкий круг явлений ядерной физики, например закономерности a-распада, g-излучение ядер, рассеяние нейтронов на ядрах и др.

    Лит.: Шрёдингер Э., Новые пути в физике. Статьи и речи, М., 1971. См. также лит. к ст. Квантовая механика .

    Л. И. Пономарёв.