Поиск значения / толкования слов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Большая Советская Энциклопедия

Кольцо алгебраическое

Кольцо алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения:

  1. множество всех целых положительных, отрицательных чисел и нуля;

  2. множество всех чётных чисел и вообще целых чисел, кратных данному числу n,

  3. множество всех рациональных чисел. Общим в этих трёх примерах является то, что сложение и умножение чисел, входящих в систему, не выводят за пределы системы (следует отметить, что и вычитание не выводит за пределы системы). В различных областях математики часто приходится иметь дело с разнообразными множествами (они могут состоять, например, из многочленов или матриц , см. примеры 7 и 9), над элементами которых можно производить две операции, весьма похожие по своим свойствам на сложение и умножение обычных чисел. Предметом теории К. является изучение свойств обширного класса такого рода множеств.

    Кольцом называют непустое множество R, для элементов которого определены две операции ≈ сложение и умножение, сопоставляющие любым двум элементам а, b из R, взятым в определённом порядке, один элемент а + b из R ≈ их сумму и один элемент ab из R ≈ их произведение, причём предполагаются выполненными следующие условия (аксиомы К.):

    I. Коммутативность сложения:

    а+b=b+ а.

    II. Ассоциативность сложения:

    а + (b + с) = (а + b) + с.

    III. Обратимость сложения (возможность вычитания): уравнение а + х = b допускает решение х = b≈a.

    IV. Дистрибутивность: а (b + с) = ab+ac, (b + с) а = ba + са.

    Перечисленные свойства показывают, что элементы К. образуют коммутативную группу относительно сложения. Дальнейшими примерами К. могут служить множества;

  4. всех действительных чисел;

  5. всех комплексных чисел;

  6. комплексных чисел вида a + bi с целыми а, b;

  7. многочленов от одного переменного х с рациональными, действительными или комплексными коэффициентами;

  8. всех функций, непрерывных на данном отрезке числовой прямой;

  9. всех квадратных матриц порядка n с действительными (или комплексными) элементами;

  10. всех кватернионов ;

  11. всех чисел Кэли ≈ Диксона, то есть выражений вида a + bе, где a, b ≈ кватернионы, е ≈ буква; сложение и умножение чисел Кэли ≈ Диксона определяются равенствами (a + bе) + (a1 + b1e) = (a + a1) + (b + b1) e, (a + bе)(a1 + b1e) = (aa1 ≈ b1) + (aa1 + b) e, где ═≈ кватернион, сопряжённый к a;

  12. всех симметрических матриц порядка n с действительными элементами относительно операций сложения матриц и «йорданового» умножения а╥b = (аb + ba);

  13. векторов трёхмерного пространства при обычном сложении и векторном умножении.

    Во многих случаях на умножение в К. налагаются дополнительные ограничения. Так, если а (bc) = (ab) c, то К. называют ассоциативным (примеры 1≈10); если в К. выполняются равенства (aa) b = a (ab), (ab) b = a (bb), то оно называется альтернативным кольцом (пример 11); если в К. выполняются равенства ab = ba, (ab) (аа) = ((аа) b) a, то оно называется йордановым кольцом (пример 12); если в К. выполняются равенства а (bc) + b (ca) + с (аb) = 0, a2 = 0, то оно называется кольцом Ли (пример 13); если ab = ba, то К. называют коммутативным (примеры 1≈8, 12). Операции сложения и умножения в К. во многом похожи по своим свойствам на соответствующие операции над числами. Так, элементы К. можно не только складывать, но и вычитать; существует элемент 0 (нуль) с обычными свойствами; для любого элемента а существует противоположный, т. е. такой элемент ≈а, что а + (≈a) = 0; произведение любого элемента на элемент 0 всегда равно нулю. Однако на примерах 8≈9, 12≈13 можно убедиться, что К. может содержать отличные от нуля элементы а, b, произведение которых равно нулю: ab = 0; такие элементы называют делителями нуля. Ассоциативное коммутативное К. без делителей нуля называют областью целостности (примеры 1≈7). Так же, как и в области целых чисел, не во всяком К. возможно деление одного элемента на другой, если же это возможно, то есть если всегда разрешимы уравнения ax = b и уа = b при а¹0, то К. называют телом (примеры 3≈5, 10, 11). Ассоциативное коммутативное тело принято называть полем (примеры 3≈ 5) (см. Поле алгебраическое). Весьма важны для многих отделов алгебры К. многочленов с одним или несколькими переменными над произвольным полем и К. матриц над ассоциативными телами, определяемые аналогично К. примеров 7 и 9. Многие классы К. всё чаще находят приложения и вне алгебры. Важнейшими из них являются: К. функций и К. операторов, сыгравшие большую роль в развитии функционального анализа; альтернативные тела, применяемые в проективной геометрии; так называемые дифференциальные К. и поля, отразившие интересную попытку применить теорию К. к дифференциальным уравнениям.

    При изучении К. большое значение имеют те или иные способы сличения друг с другом различных К. Одним из наиболее плодотворных является гомоморфное отображение (гомоморфизм), т. е. такое однозначное отображение R╝R" кольца R на кольцо R", что из а ╝ a", b ╝b" следует а + b ╝ a" +b" и ab ╝ a"b". Если это отображение также и взаимно однозначное, то оно называется изоморфизмом, а кольца R и R" изоморфными. Изоморфные К. обладают одинаковыми алгебраическими свойствами.

    Множество М элементов кольца R называют подкольцом, если М само является К. относительно операций, определённых в R. Подкольцо М называют левым (правым или двусторонним) идеалом кольца R, если для любых элементов т из М и r из R произведение rm (соответственно mr или как rm, так и mr) лежит в М. Элементы а и b кольца R называют сравнимыми по идеалу М, если а ≈ b принадлежит М. Всё К. разбивается на классы сравнимых элементов ≈ классы вычетов по идеалу М. Если определить сложение и умножение классов вычетов по двустороннему идеалу М через сложение и умножение элементов этих классов, то сами классы вычетов образуют К. ≈ фактор кольцо R/M кольца R по идеалу М. Имеет место теорема о гомоморфизме К.: если каждому элементу К. поставить в соответствие содержащий его класс, то получают гомоморфное отображение кольца R на факторкольцо RM; обратно, если R гомоморфно отображается на R", то множеством элементов из R, отображающихся в нуль кольца R", будет двусторонним идеалом в R, и R" изоморфно R/M.

    Среди различных типов К. легче других поддаются изучению и сравнительно чаще находят приложение так называемые алгебры: кольцо R называют алгеброй над полем Р, если для любых a из Р и r из R определено произведение ar также из R, причём (a + b) r = ar + br, a(r + s)= ar + as, (ab) r = a(br), a(rs) = (ar) s = r (as), er = r для любых a, b из Р и r, s из R, где e ≈ единица поля Р. Если все элементы алгебры линейно выражаются через n линейно независимых элементов (см. Линейная зависимость ), то R называют алгеброй конечного ранга n, или гиперкомплексной системой (см. Гиперкомплексные числа ). Примерами алгебр могут служить комплексные числа (алгебра ранга 2 над полем действительных чисел), полное К. матриц с элементами из поля Р (которое является алгеброй ранга n2 над Р), К. примера 10 (алгебра ранга 4 над полем действительных чисел), К. примера 8 и др.

    Для целых чисел и К. многочленов справедлива теорема об однозначной разложимости элемента в произведение простых, т. с. далее не разложимых элементов. Эта теорема верна для любых К. главных идеалов, то есть областей целостности, в которых любой идеал состоит из кратных одного элемента. Частным случаем таких К. являются евклидовы К., то есть К., где любому элементу а ¹ 0 соответствует неотрицательное целое число n (a), причём n (ab) ³ n (a) и для любых а и b ¹ 0 существуют такие q и r, что а = bq +r и либо n (r)<n (b), либо r = 0. Таковы, например, К. многочленов и К. примеров 1 и 6. Для широкого класса К. верна теорема об однозначном разложении идеала в произведение простых идеалов, хотя для самих элементов она не выполняется. Основы теории разложения идеалов и абстрактных К. были заложены Э. Нётер (в 20-х гг. 20 в.).

    Одним из первых в России теорией К. занимался Е. И. Золотарёв (70-е гг. 19 в.); его исследования относятся к числовым К., а именно ≈ к теории разложения идеалов в них. В Советском Союзе теория К. разрабатывается в основном в трёх центрах: Москве, Новосибирске и Кишиневе.

    Лит.: Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Энциклопедия элементарной математики, кн. 1, М. ≈ Л., 1951; Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1≈2, М. ≈ Л.,1947; Джекобсон Н., Строение колец, пер. с англ., М., 1961; Ленг С., Алгебра, пер. с англ., М., 1968.